
# **Project Plan – Blender Conch Str.**



Tina Shingrani

Coach: Chris Brunne

#### **About**

We get to choose our project this time and I want to take a different approach from the things I have learnt. In this project I want to dive a bit deeper in learning Blender. I find this a creative tool that will help me in my education/career. As a total beginner it is a challenge for me but to spice things up I wanted to make sure I added the fun part. This won't be just any blender project, rather a fun to make and exciting one. I will model Conch Street, which includes the iconic houses of SpongeBob, Squidward, and Patrick from the show Spongebob SquarePants. The house models will be on a nice sand platform with a right amount of lighting to see enough textures and details. If I spare the time, I will try to add more effects to make the scene pop up: jelly fish; underwater look, etc. All throughout I will ask for feedback from peers and my project coach and there will be documentation of the whole process. This project will be presented on the 20th of june.



## **Project goal**

successfully create a nicely detailed spongebob's patricks and squidwards house on the conch street with blender.

## **Project duration**

+/- 3 weeks

## **Main Research Questions**

- What are the key visual and architectural elements of SpongeBob's, Squidward's, and Patrick's houses, and how can they be translated into 3D models?
- What design choices are used in spongebob animations; 3D movies; games that could be seen as insightful to the 3D models you could create?
  What are the most efficient beginner-friendly modeling techniques in Blender for creating organic and stylized shapes?
  How can I animate simple objects, such as jellyfish, to move realistically in an underwater scene?
  What visual effects and lighting setups are effective in simulating an underwater environment in Blender?

## Risk analysis

can they be overcome through structured project work?

What challenges do beginners typically face when learning Blender, and how

6



Insufficient time to finish the project by the deadline.

The Blender crashes without saving the project and all progress is lost

#### **Learning Outcomes**

Lo 1 (interactive design), 3 (iterative design) and lo 4 (professional standard) will come forward in this project. This is because there will be research done on the design and styles, together with research on blender techniques to eventually self-educate and design this myself in blender. On top of that constant feedback will make sure there's iteration and reasoning for the result.

#### **Planning**

Sprint 1: May 29 - June 4

Goal: Research, Concept Art, and Blender Basics

- Create and hand in project plan
- Research visual references from SpongeBob (Conch Street, houses, jellyfish, underwater look)
- undersized in the street layout the street layout was and the street layout in the street lay
- 峰 Learn the Blender interface: navigation, modeling tools, materials, lighting
- Try simple modeling exercises (e.g. cube-to-pineapple)
- Set up project folder with categories (references, Blender files, renders, feedback, notes)

#### **Deliverables of sprint 1:**

- Sketches of the houses and layout plan
- Simple Blender practice files
- Research doc with image references
  - Feedback Moment 1: Present sketches, research & initial modeling trials to peers/mentor (by June 3 or 4)

**Goal:** Modeling Conch Street (houses and environment)

- Start modeling SpongeBob's house (pineapple)
- Continue with Squidward's house (Easter Island head)
- Model Patrick's rock home
- $\stackrel{\triangle}{=}$  Model the base platform (sand + path + grass/rocks)
- Optional if time: environment/background (sky, ocean floor)

#### **Deliverables of sprint 2:**

- Complete base 3D models of all three houses
- Scene layout with basic composition
- Screenshots for documentation
  - **Feedback Moment 2**: June 7 on house modeling progress
  - **Feedback Moment 3**: June 10 or 11 full street layout and modeling stage

## Sprint 3: June 12 – June 19

Goal: Animation, Materials, Rendering, and Final Documentation

- Model and animate floating jellyfish
- Add simple materials and lighting to the scene
- If time allows: add underwater effect (light rays, fog, bubbles)
- Render images and short animation/flythrough
- Prepare final documentation (PDF or blog-style): research, process, feedback, screenshots, outcomes
- Create presentation (slides or video)

#### **Deliverables of sprint 3:**

• Animated scene or still renders

• Documentation (PDF or slide deck)

**★ Feedback Moment 4**: June 17 – complete scene with animation and effects, ready for polish

## ₩ June 20 – Final Day

- Final tweaks
- Pressentation prep rehearsal
- Deliver presentation with documentation and render/animation



Fin.